Simantics Mechanics:
3D modelling and simulation tool for multibody system simulation

7th MODPROD Workshop, Feb 5–6, 2013
Juha Kortelainen*, Marko Luukkainen
Pekka Rahkola, Teemu Halmeaho
VTT Technical Research Centre of Finland
Simantics Mechanics:
3D modelling and simulation tool for multibody system simulation
VTT Technical Research Centre of Finland

VTT IS
- a globally networked multitechnological applied research organisation
- a not-for-profit and impartial research centre

VTT HAS
- extensive cross-disciplinary technological and business expertise
- unique research infrastructure
- comprehensive global partnership networks in business, industrial and research communities

VTT CREATES
- new technology and science-based innovations in co-operation with domestic and foreign partners
VTT Group in brief

Customer sectors
- Biotechnology, pharmaceutical and food industries
- Chemical industry and environment
- Electronics
- Energy
- Forest industry
- ICT
- Machine, vehicle and metal industries
- Real estate and construction
- Services and logistics

Focus areas of research
- Applied materials
- Bio- and chemical processes
- Energy
- Information and communication technologies
- Industrial systems management
- Microtechnologies and electronics
- Services and the built environment
- Business research

VTT’s operations
- Research and Development
- Strategic Research
- Business Solutions
- Business Development
- Group Services

VTT’s companies
- VTT Expert Services Ltd (incl. Labtium Ltd, Enas Ltd)
- VTT Ventures Ltd
- VTT International Ltd (incl. VTT Brasil LTDA)
- VTT Memsfab Ltd
Simantics Mechanics:
3D modelling and simulation tool for multibody system simulation

THE SIMANTICS PLATFORM
What is the Simantics platform?

1. An internal development project of VTT Technical Research Centre of Finland
 - Simantics is a project in Complex Systems Design and eEngineering theme programs
 - Project duration September 2006 – December 2012
 - Project budget ~2.4 M€ (total for core development)

2. Software platform for modelling and simulation
 - Application development platform
 - Integration solution for modelling and simulation
 - Efficient semantic ontology-based data modelling and database implementation

3. Software development community and philosophy
 - Simantics is an open source project, the platform is open for everyone to adopt for use
 - Flexible EPL licensing allows both open source and proprietary utilisation of the platform
 - Cumulates and rationalises modelling and simulation software development and use

For more information, visit: www.simantics.org
Plug-in architecture for modelling and simulation

For more information, visit: www.simantics.org
The Simantics platform in action
Simantics Mechanics:
3D modelling and simulation tool for multibody system simulation

SIMANTICS MECHANICS
SOFTWARE DEMONSTRATOR
Multibody system (MBS) simulation

- Multibody system (MBS) simulation is:
 - Special form of system modelling and simulation
 - A multibody system consists of (multiple) bodies that interact with each other through joints, forces acting on and between the bodies, and additional data constraining components (e.g. algebraic equations)

- The following is typical for MBS modelling:
 - Mass properties (mass, centre of mass, mass inertia tensor) of the bodies are primary data, but difficult to define for complex geometries → geometry is important
 - Space orientations (3D) are difficult to perceive → interactive 3D is important
 - In the overall simulation process, the time spent in the modelling phase is dominant

- Solid modelling is a convenient way of defining complex geometries
 - Two commonly used methods: constructive solid geometry (CSG) and boundary representation

Images:
Background on Simantics Mechanics

- The Simantics Mechanics MBS tool contains
 - A 3D CSG geometry modeller (a generic modelling component)
 - A 3D MBS model editor (a specific modelling component)
 - A MBS simulation visualiser (animation of the simulation results)
 - A results data plotting tool (a generic data visualisation component)

- OpenModelica\(^1\) with Modelica MultiBody\(^2\) library is used as the simulation backend
- Simantics platform\(^3\) is used as the application framework
- OpenCASCADE\(^4\) is used for solid geometry modelling
- Visualization Toolkit\(^5\) (VTK) is used for 3D visualisation

1) https://www.openmodelica.org/
2) https://www.modelica.org/
3) https://www.simantics.org/simantics
4) http://www.opencascade.org/
5) http://www.vtk.org/
Data model in the Simantics platform

- Different modelling and simulation approaches are modelled as ontologies and mapped together to form a consistent graph of model configurations.
- Both 3D geometry and MBS model are defined as specific ontologies.
- The user interface, modelling database, scene graph, and the rendering backend are kept in sync.
- The model in selected format (at the moment only Modelica) is created from the semantic graph when the case is simulated.

- The objective is to develop a backend independent MBS model editor and data management system, i.e. detach MBS modelling from numerical solving.
Demo video

Video will be available at https://www.simantics.org/simantics
Summary

- 3D modelling and visualisation tools increase remarkably the overall efficiency of the MBS modelling and simulation process
- Utilisation of platforms, such as the OpenModelica environment and the Simantics platform, and high-level software libraries, such as OpenCASCADE and the Visualization Toolkit, rationalises the software development for modelling and simulation
- Semantic data representation enables efficient data mapping and enables the development of a general data management system
- Future work with the Simantics Mechanics environment (a wish list):
 - Full support for all the main MBS modelling components
 - Redesign of the MBS ontology (software internal data model)
 - Support for 2D graph-based modelling and mapping between 3D and 2D model representations
 - Interactive modelling features, such as geometry feature picking
 - Usability improvements, e.g. new component location and orientation tool
 - Support for other common MBS simulation backends, such as MSC Adams and SIMPACK, and data mapping between different backend data models
 - Import of MBS models in third party file formats

For more information:
- juha.kortelainen@vtt.fi
- marko.luukkainen@vtt.fi
- pekka.rahkola@vtt.fi
- teemu.halmeaho@vtt.fi
VTT creates business from technology